What CANNOT be effectively enforced using an API policy in Anypoint Platform?
A.
Guarding against Denial of Service attacks
B.
Maintaining tamper-proof credentials between APIs
C.
Logging HTTP requests and responses
D.
Backend system overloading
Guarding against Denial of Service attacks
Explanation: Explanation
Correct Answer: Guarding against Denial of Service attacks
*****************************************
>> Backend system overloading can be handled by enforcing "Spike Control Policy"
>> Logging HTTP requests and responses can be done by enforcing "Message Logging
Policy"
>> Credentials can be tamper-proofed using "Security" and "Compliance" Policies
However, unfortunately, there is no proper way currently on Anypoint Platform to guard
against DOS attacks.
Reference: https://help.mulesoft.com/s/article/DDos-Dos-at
A business process is being implemented within an organization's application network. The architecture group proposes using a more coarse-grained application network design with relatively fewer APIs deployed to the application network compared to a more fine-grained design. Overall, which factor typically increases with a more coarse-grained design for this business process implementation and deployment compared with using a more finegrained design?
A. The complexity of each API implementation
B. The number of discoverable assets related to APIs deployed in the application network
C. The number of possible connections between API implementations in the application network
D. The usage of network infrastructure resources by the application network
A new upstream API Is being designed to offer an SLA of 500 ms median and 800 ms
maximum (99th percentile) response time. The corresponding API implementation needs to
sequentially invoke 3 downstream APIs of very similar complexity.
The first of these downstream APIs offers the following SLA for its response time: median:
100 ms, 80th percentile: 500 ms, 95th percentile: 1000 ms.
If possible, how can a timeout be set in the upstream API for the invocation of the first
downstream API to meet the new upstream API's desired SLA?
A.
Set a timeout of 50 ms; this times out more invocations of that API but gives additional
room for retries
B.
Set a timeout of 100 ms; that leaves 400 ms for the other two downstream APIs to complete
C.
No timeout is possible to meet the upstream API's desired SLA; a different SLA must be
negotiated with the first downstream API or invoke an alternative API
D.
Do not set a timeout; the Invocation of this API Is mandatory and so we must wait until it
responds
Set a timeout of 100 ms; that leaves 400 ms for the other two downstream APIs to complete
Explanation:
Explanation
Correct Answer: Set a timeout of 100ms; that leaves 400ms for other two downstream APIs
to complete
*****************************************
Key details to take from the given scenario:
>> Upstream API's designed SLA is 500ms (median). Lets ignore maximum SLA response
times.
>> This API calls 3 downstream APIs sequentially and all these are of similar complexity.
>> The first downstream API is offering median SLA of 100ms, 80th percentile: 500ms;
95th percentile: 1000ms.
Based on the above details:
>> We can rule out the option which is suggesting to set 50ms timeout. Because, if the
median SLA itself being offered is 100ms then most of the calls are going to timeout and
time gets wasted in retried them and eventually gets exhausted with all retries. Even if
some retries gets successful, the remaining time wont leave enough room for 2nd and 3rd
downstream APIs to respond within time.
>> The option suggesting to NOT set a timeout as the invocation of this API is mandatory
and so we must wait until it responds is silly. As not setting time out would go against the
good implementation pattern and moreover if the first API is not responding within its
offered median SLA 100ms then most probably it would either respond in 500ms (80th
percentile) or 1000ms (95th percentile). In BOTH cases, getting a successful response
from 1st downstream API does NO GOOD because already by this time the Upstream API
SLA of 500 ms is breached. There is no time left to call 2nd and 3rd downstream APIs.
>> It is NOT true that no timeout is possible to meet the upstream APIs desired SLA.
As 1st downstream API is offering its median SLA of 100ms, it means MOST of the time we
would get the responses within that time. So, setting a timeout of 100ms would be ideal for
MOST calls as it leaves enough room of 400ms for remaining 2 downstream API calls.
What is a key requirement when using an external Identity Provider for Client Management in Anypoint Platform?
A.
Single sign-on is required to sign in to Anypoint Platform
B.
The application network must include System APIs that interact with the Identity
Provider
C.
To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API clients must submit access tokens issued by that same Identity Provider
D.
APIs managed by Anypoint Platform must be protected by SAML 2.0 policies
To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API clients must submit access tokens issued by that same Identity Provider
Explanation: https://www.folkstalk.com/2019/11/mulesoft-integration-and-platform.html
Explanation
Correct Answer: To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API
clients must submit access tokens issued by that same Identity Provider
*****************************************
>> It is NOT necessary that single sign-on is required to sign in to Anypoint Platform
because we are using an external Identity Provider for Client Management
>> It is NOT necessary that all APIs managed by Anypoint Platform must be protected by
SAML 2.0 policies because we are using an external Identity Provider for Client
Management
>> Not TRUE that the application network must include System APIs that interact with the
Identity Provider because we are using an external Identity Provider for Client Management
Only TRUE statement in the given options is - "To invoke OAuth 2.0-protected APIs
managed by Anypoint Platform, API clients must submit access tokens issued by that same
Identity Provider"
References:
https://docs.mulesoft.com/api-manager/2.x/external-oauth-2.0-token-validation-policy
https://blogs.mulesoft.com/dev/api-dev/api-security-ways-to-authenticate-and-authorize/
An API has been updated in Anypoint exchange by its API producer from version 3.1.1 to
3.2.0 following accepted semantic versioning practices and the changes have been
communicated via the APIs public portal. The API endpoint does NOT change in the new
version. How should the developer of an API client respond to this change?
A.
The API producer should be requested to run the old version in parallel with the new one
B.
The API producer should be contacted to understand the change to existing functionality
C.
The API client code only needs to be changed if it needs to take advantage of the new features
D.
The API clients need to update the code on their side and need to do full regression
The API client code only needs to be changed if it needs to take advantage of the new features
What best describes the Fully Qualified Domain Names (FQDNs), also known as DNS entries, created when a Mule application is deployed to the CloudHub Shared Worker Cloud?
A.
A fixed number of FQDNs are created, IRRESPECTIVE of the environment and VPC design
B.
The FQDNs are determined by the application name chosen, IRRESPECTIVE of the region
C.
The FQDNs are determined by the application name, but can be modified by an
administrator after deployment
D.
The FQDNs are determined by both the application name and the Anypoint Platform
organization
The FQDNs are determined by the application name chosen, IRRESPECTIVE of the region
Explanation: Explanation
Correct Answer: The FQDNs are determined by the application name chosen,
IRRESPECTIVE of the region
*****************************************
>> When deploying applications to Shared Worker Cloud, the FQDN are always
determined by application name chosen.
>> It does NOT matter what region the app is being deployed to.
>> Although it is fact and true that the generated FQDN will have the region included in it
(Ex: exp-salesorder-api.au-s1.cloudhub.io), it does NOT mean that the same name can be
used when deploying to another CloudHub region.
>> Application name should be universally unique irrespective of Region and Organization
and solely determines the FQDN for Shared Load Balancers
Refer to the exhibit.
An organization uses one specific CloudHub (AWS) region for all CloudHub deployments.
How are CloudHub workers assigned to availability zones (AZs) when the organization's
Mule applications are deployed to CloudHub in that region?
A.
Workers belonging to a given environment are assigned to the same AZ within that region
B.
AZs are selected as part of the Mule application's deployment configuration
C.
Workers are randomly distributed across available AZs within that region
D.
An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ
An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ
Explanation: Explanation
Correct Answer: Workers are randomly distributed across available AZs within that region.
*****************************************
>> Currently, we only have control to choose which AWS Region to choose but there is no
control at all using any configurations or deployment options to decide what Availability
Zone (AZ) to assign to what worker.
>> There are NO fixed or implicit rules on platform too w.r.t assignment of AZ to workers
based on environment or application.
>> They are completely assigned in random. However, cloudhub definitely ensures that
HA is achieved by assigning the workers to more than on AZ so that all workers are not
assigned to same AZ for same application.
: https://help.mulesoft.com/s/question/0D52T000051rqDj/one-cloudhub-aws-region-howcloudhub-
workers-are-assigned-to-availability-zones-azs-
Graphical user interface, application
Description automatically generated
Bottom of Form
Top of Form
When must an API implementation be deployed to an Anypoint VPC?
A.
When the API Implementation must invoke publicly exposed services that are deployed outside of CloudHub in a customer- managed AWS instance
B.
When the API implementation must be accessible within a subnet of a restricted customer-hosted network that does not allow public access
C.
When the API implementation must be deployed to a production AWS VPC using the Mule Maven plugin
D.
When the API Implementation must write to a persistent Object Store
When the API Implementation must invoke publicly exposed services that are deployed outside of CloudHub in a customer- managed AWS instance
| Page 1 out of 19 Pages |