Which of the following best fits the definition of API-led connectivity?
A.
API-led connectivity is not just an architecture or technology but also a way to organize people and processes for efficient IT delivery in the organization
B.
API-led connectivity is a 3-layered architecture covering Experience, Process and System layers
C.
API-led connectivity is a technology which enabled us to implement Experience, Process and System layer based APIs
API-led connectivity is not just an architecture or technology but also a way to organize people and processes for efficient IT delivery in the organization
Explanation: Explanation
Correct Answer: API-led connectivity is not just an architecture or technology but also a
way to organize people and processes for efficient IT delivery in the organization.
*****************************************
Reference: https://blogs.mulesoft.com/dev/api-dev/what-is-api-led-connectivity/
What are 4 important Platform Capabilities offered by Anypoint Platform?
A.
API Versioning, API Runtime Execution and Hosting, API Invocation, API Consumer Engagement
B.
API Design and Development, API Runtime Execution and Hosting, API Versioning, API
Deprecation
C.
API Design and Development, API Runtime Execution and Hosting, API Operations and
Management, API Consumer Engagement
D.
API Design and Development, API Deprecation, API Versioning, API Consumer
Engagement
API Design and Development, API Runtime Execution and Hosting, API Operations and
Management, API Consumer Engagement
Explanation: Explanation
Correct Answer: API Design and Development, API Runtime Execution and Hosting, API
Operations and Management, API Consumer Engagement
*****************************************
>> API Design and Development - Anypoint Studio, Anypoint Design Center, Anypoint
Connectors
>> API Runtime Execution and Hosting - Mule Runtimes, CloudHub, Runtime Services
>> API Operations and Management - Anypoint API Manager, Anypoint Exchange
>> API Consumer Management - API Contracts, Public Portals, Anypoint Exchange, API
Notebooks
Which component monitors APIs and endpoints at scheduled intervals, receives reports about whether tests pass or fail, and displays statistics about API and endpoint performance?
A. API Analytics
B. Anypoint Monitoring dashboards
C. APT Functional Monitoring
D. Anypoint Runtime Manager alerts
Explanation:
An organization wants to make sure only known partners can invoke the organization's
APIs. To achieve this security goal, the organization wants to enforce a Client ID
Enforcement policy in API Manager so that only registered partner applications can invoke
the organization's APIs. In what type of API implementation does MuleSoft recommend
adding an API proxy to enforce the Client ID Enforcement policy, rather than embedding
the policy directly in the application's JVM?
A.
A Mule 3 application using APIkit
B.
A Mule 3 or Mule 4 application modified with custom Java code
C.
A Mule 4 application with an API specification
D.
A Non-Mule application
A Non-Mule application
Explanation: Explanation
Correct Answer: A Non-Mule application
*****************************************
>> All type of Mule applications (Mule 3/ Mule 4/ with APIkit/ with Custom Java Code etc)
running on Mule Runtimes support the Embedded Policy Enforcement on them.
>> The only option that cannot have or does not support embedded policy enforcement
and must have API Proxy is for Non-Mule Applications.
So, Non-Mule application is the right answer
When can CloudHub Object Store v2 be used?
A. To store an unlimited number of key-value pairs
B. To store payloads with an average size greater than 15MB
C. To store information in Mule 4 Object Store v1
D. To store key-value pairs with keys up to 300 characters
Explanation: CloudHub Object Store v2 is a managed key-value store provided by
MuleSoft to support various use cases where temporary data storage is required. Here’s
why Option D is correct:
Key Length Support: Object Store v2 allows storage of keys with a length of up to
300 characters, making it suitable for applications needing flexible and descriptive
keys.
Limitations on Size:
Key-Value Limits: Object Store v2 is designed for moderate, transient storage
needs, and does not support unlimited storage. Thus, Option A is incorrect.
Backward Compatibility: Object Store v2 does not support Mule 4 applications
running Object Store v1. Option C is incorrect as Object Store v1 and v2 are
distinct.
Which APIs can be used with DataGraph to create a unified schema?

A. APIs 1, 3, 5
B. APIs 2, 4 ,6
C. APIs 1, 2, s5, 6
D. APIs 1, 2, 3, 4
Explanation:
To create a unified schema in MuleSoft's DataGraph, APIs must be exposed
in a way that allows DataGraph to pull and consolidate data from these APIs into a single
schema accessible to consumers. DataGraph provides a federated approach, combining
multiple APIs to form a single, unified API endpoint.
In this setup:
APIs 1, 2, 3, and 4 are suitable candidates for DataGraph because they are hosted
within the Customer VPC on CloudHub and are accessible either through a
Shared Load Balancer (LB) or a Dedicated Load Balancer (DLB). Both of these
load balancers provide public access, which is a necessary condition for
DataGraph as it must access the APIs to aggregate data.
APIs 5 and 6 are hosted on Customer Hosted Server 2, which is explicitly marked
as "Not public". Since DataGraph requires API access through a publicly
reachable endpoint to aggregate them into a unified schema, APIs 5 and 6 cannot
be used with DataGraph in this configuration.
APIs 3 and 4 on Customer Hosted Server 1 appear accessible through a Shared
LB, implying public accessibility that meets DataGraph’s requirements.
By combining APIs 1, 2, 3, and 4 within DataGraph, you can create a unified schema that
enables clients to query data seamlessly from all these APIs as if it were from a single
source.
This setup allows for efficient data retrieval and can simplify API consumption by reducing
the need to call multiple APIs individually, thus optimizing performance and developer
experience.
The responses to some HTTP requests can be cached depending on the HTTP verb used
in the request. According to the HTTP specification, for what HTTP verbs is this safe to do?
A.
PUT, POST, DELETE
B.
GET, HEAD, POST
C.
GET, PUT, OPTIONS
D.
GET, OPTIONS, HEAD
GET, OPTIONS, HEAD
What is a typical result of using a fine-grained rather than a coarse-grained API deployment model to implement a given business process?
A.
A decrease in the number of connections within the application network supporting the business process
B.
A higher number of discoverable API-related assets in the application network
C.
A better response time for the end user as a result of the APIs being smaller in scope and complexity
D.
An overall tower usage of resources because each fine-grained API consumes less resources
A higher number of discoverable API-related assets in the application network
Explanation: Explanation
Correct Answer: A higher number of discoverable API-related assets in the application
network.
*****************************************
>> We do NOT get faster response times in fine-grained approach when compared to
coarse-grained approach.
>> In fact, we get faster response times from a network having coarse-grained APIs
compared to a network having fine-grained APIs model. The reasons are below.
Fine-grained approach:
1. will have more APIs compared to coarse-grained
2. So, more orchestration needs to be done to achieve a functionality in business process.
3. Which means, lots of API calls to be made. So, more connections will needs to be
established. So, obviously more hops, more network i/o, more number of integration points
compared to coarse-grained approach where fewer APIs with bulk functionality embedded
in them.
4. That is why, because of all these extra hops and added latencies, fine-grained approach
will have bit more response times compared to coarse-grained.
5. Not only added latencies and connections, there will be more resources used up in finegrained
approach due to more number of APIs.
That's why, fine-grained APIs are good in a way to expose more number of resuable assets
in your network and make them discoverable. However, needs more maintenance, taking
care of integration points, connections, resources with a little compromise w.r.t network
hops and response times.
| Page 1 out of 19 Pages |