Mulesoft MCPA-Level-1 Exam Questions

151 Questions


Updation Date : 13-Jan-2026



Mulesoft MCPA-Level-1 exam questions feature realistic, exam-like questions that cover all key topics with detailed explanations. You’ll identify your strengths and weaknesses, allowing you to focus your study efforts effectively. By practicing with our MCPA-Level-1 practice test, you’ll gain the knowledge, speed, and confidence needed to pass the Mulesoft exam on your first attempt.

Why leave your success to chance? Our Mulesoft MCPA-Level-1 dumps are your ultimate guide to passing the exam on your first try!

An Order API must be designed that contains significant amounts of integration logic and
involves the invocation of the Product API.
The power relationship between Order API and Product API is one of "Customer/Supplier",
because the Product API is used heavily throughout the organization and is developed by a
dedicated development team located in the office of the CTO.
What strategy should be used to deal with the API data model of the Product API within the
Order API?


A.

Convince the development team of the Product API to adopt the API data model of the Order API such that the integration logic of the Order API can work with one consistent internal data model


B.

Work with the API data types of the Product API directly when implementing the integration logic of the Order API such that the Order API uses the same (unchanged) data types as the Product API


C.

Implement an anti-corruption layer in the Order API that transforms the Product API data
model into internal data types of the Order API


D.

Start an organization-wide data modeling initiative that will result in an Enterprise Data
Model that will then be used in both the Product API and the Order API





C.
  

Implement an anti-corruption layer in the Order API that transforms the Product API data
model into internal data types of the Order API



Explanation: Explanation
Correct Answer: Convince the development team of the product API to adopt the API data
model of the Order API such that integration logic of the Order API can work with one
consistent internal data model
*****************************************
Key details to note from the given scenario:
>> Power relationship between Order API and Product API is customer/supplier
So, as per below rules of "Power Relationships", the caller (in this case Order API) would
request for features to the called (Product API team) and the Product API team would need
to accomodate those requests.

Refer to the exhibit.

An organization uses one specific CloudHub (AWS) region for all CloudHub deployments.
How are CloudHub workers assigned to availability zones (AZs) when the organization's
Mule applications are deployed to CloudHub in that region?


A.

Workers belonging to a given environment are assigned to the same AZ within that region


B.

AZs are selected as part of the Mule application's deployment configuration


C.

Workers are randomly distributed across available AZs within that region


D.

An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ





D.
  

An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ



Explanation: Explanation
Correct Answer: Workers are randomly distributed across available AZs within that region.
*****************************************
>> Currently, we only have control to choose which AWS Region to choose but there is no
control at all using any configurations or deployment options to decide what Availability
Zone (AZ) to assign to what worker.
>> There are NO fixed or implicit rules on platform too w.r.t assignment of AZ to workers
based on environment or application.
>> They are completely assigned in random. However, cloudhub definitely ensures that
HA is achieved by assigning the workers to more than on AZ so that all workers are not
assigned to same AZ for same application.
: https://help.mulesoft.com/s/question/0D52T000051rqDj/one-cloudhub-aws-region-howcloudhub-
workers-are-assigned-to-availability-zones-azs-
Graphical user interface, application
Description automatically generated
Bottom of Form
Top of Form

 

Which APIs can be used with DataGraph to create a unified schema?


A. APIs 1, 3, 5


B. APIs 2, 4 ,6


C. APIs 1, 2, s5, 6


D. APIs 1, 2, 3, 4





D.
  APIs 1, 2, 3, 4

Explanation:
To create a unified schema in MuleSoft's DataGraph, APIs must be exposed in a way that allows DataGraph to pull and consolidate data from these APIs into a single schema accessible to consumers. DataGraph provides a federated approach, combining multiple APIs to form a single, unified API endpoint.
In this setup:
APIs 1, 2, 3, and 4 are suitable candidates for DataGraph because they are hosted within the Customer VPC on CloudHub and are accessible either through a Shared Load Balancer (LB) or a Dedicated Load Balancer (DLB). Both of these load balancers provide public access, which is a necessary condition for DataGraph as it must access the APIs to aggregate data.
APIs 5 and 6 are hosted on Customer Hosted Server 2, which is explicitly marked as "Not public". Since DataGraph requires API access through a publicly reachable endpoint to aggregate them into a unified schema, APIs 5 and 6 cannot be used with DataGraph in this configuration.
APIs 3 and 4 on Customer Hosted Server 1 appear accessible through a Shared LB, implying public accessibility that meets DataGraph’s requirements.
By combining APIs 1, 2, 3, and 4 within DataGraph, you can create a unified schema that enables clients to query data seamlessly from all these APIs as if it were from a single source.
This setup allows for efficient data retrieval and can simplify API consumption by reducing the need to call multiple APIs individually, thus optimizing performance and developer experience.

A customer wants to host their MuleSoft applications in CloudHub 1.0, and these applications should be available at the domain https://api.acmecorp.com.
After creating a dedicated load balancer (DLB) called acme-dib-prod, which further action must the customer take to complete the configuration?


A. Configure the DLB with a TLS certificate for api.acmecorp.com and create an A record for api.acmecorp.com to the public IP addresses associated with their DLB


B. Configure the DLB with a TLS certificate for api.acmecorp.com and create a CNAME record from api.acmecorp.com to acme-dib-prod.|lb.anypointdns.net


C. Configure the DLB with a TLS certificate for acme-dib-prod.Jb.anypointdns.net and create a CNAME record from api.acmecorp:com to acme-dlb-prod.lb.anypointdns.net


D. Configure the DLB with a TLS certificate for aplacmecorp.com and create a CNAME record from api.aomecorp.com to acme-dib-prod.ei.cloubhub.io





B.
  Configure the DLB with a TLS certificate for api.acmecorp.com and create a CNAME record from api.acmecorp.com to acme-dib-prod.|lb.anypointdns.net

Explanation:
When setting up a custom domain for MuleSoft applications hosted on CloudHub 1.0 using a Dedicated Load Balancer (DLB), follow these steps:
Set Up the TLS Certificate: Configure the DLB (acme-dib-prod) with a TLS certificate that covers the custom domain api.acmecorp.com. This certificate will allow HTTPS traffic to be securely directed through the DLB to your Mule applications.

  • DNS Configuration with CNAME:
  • Why Option B is Correct:
  • Explanation of Incorrect Options:

An organization is implementing a Quote of the Day API that caches today's quote.
What scenario can use the GoudHub Object Store via the Object Store connector to persist
the cache's state?


A.

When there are three CloudHub deployments of the API implementation to three
separate CloudHub regions that must share the cache state


B.

When there are two CloudHub deployments of the API implementation by two Anypoint
Platform business groups to the same CloudHub region that must share the cache state


C.

When there is one deployment of the API implementation to CloudHub and anottV
deployment to a customer-hosted Mule runtime that must share the cache state


D.

When there is one CloudHub deployment of the API implementation to three CloudHub
workers that must share the cache state





D.
  

When there is one CloudHub deployment of the API implementation to three CloudHub
workers that must share the cache state



Explanation: Explanation
Correct Answer: When there is one CloudHub deployment of the API implementation to
three CloudHub workers that must share the cache state.
*****************************************
Key details in the scenario:
>> Use the CloudHub Object Store via the Object Store connector
Considering above details:
>> CloudHub Object Stores have one-to-one relationship with CloudHub Mule Applications.
>> We CANNOT use an application's CloudHub Object Store to be shared among multiple
Mule applications running in different Regions or Business Groups or Customer-hosted
Mule Runtimes by using Object Store connector.
>> If it is really necessary and very badly needed, then Anypoint Platform supports a way
by allowing access to CloudHub Object Store of another application using Object Store
REST API. But NOT using Object Store connector.
So, the only scenario where we can use the CloudHub Object Store via the Object Store
connector to persist the cache’s state is when there is one CloudHub deployment of the
API implementation to multiple CloudHub workers that must share the cache state

A Mule application exposes an HTTPS endpoint and is deployed to the CloudHub Shared Worker Cloud. All traffic to that Mule application must stay inside the AWS VPC. To what TCP port do API invocations to that Mule application need to be sent?


A. 443


B. 8081


C. 8091


D. 8082





D.
  8082

Explanation:
Correct Answer: 8082

  • 8091 and 8092 ports are to be used when keeping your HTTP and HTTPS app private to the LOCAL VPC respectively.
  • Above TWO ports are not for Shared AWS VPC/ Shared Worker Cloud.
  • 8081 is to be used when exposing your HTTP endpoint app to the internet through Shared LB
  • 8082 is to be used when exposing your HTTPS endpoint app to the internet through Shared LB
So, API invocations should be sent to port 8082 when calling this HTTPS based app.

Which out-of-the-box key performance indicator measures the success of a typical Center for Enablement and is immediately available in responses from Anypoint Platform APIs?


A. Per business group, the ratio of the number of production APT implementations deployed using a C1/CD pipeline to the number of production API implementations deployed manually


B. Per deployed API implementation, the amount of bandwidth consumed each day


C. Per published API, the number of developers that downloaded s version of the API specification


D. Per published API, the number of consumers that requested access to the API and have been approved in the Production environment





D.
  Per published API, the number of consumers that requested access to the API and have been approved in the Production environment

A client has several applications running on the Salesforce service cloud. The business requirement for integration is to get daily data changes from Account and Case Objects. Data needs to be moved to the client's private cloud AWS DynamoDB instance as a single JSON and the business foresees only wanting five attributes from the Account object, which has 219 attributes (some custom) and eight attributes from the Case Object. What design should be used to support the API/ Application data model?


A. Create separate entities for Account and Case Objects by mimicking all the attributes in SAPI, which are combined by the PAPI and filtered to provide JSON output containing 13 attributes.


B. Request client’s AWS project team to replicate all the attributes and create Account and Case JSON table in DynamoDB. Then create separate entities for Account and Case Objects by mimicking all the attributes in SAPI to transfer ISON data to DynamoD for respective Objects


C. Start implementing an Enterprise Data Model by defining enterprise Account and Case Objects and implement SAPI and DynamoDB tables based on the Enterprise Data Model,


D. Create separate entities for Account with five attributes and Case with eight attributes in SAPI, which are combined by the PAPI to provide JSON output containing 13 attributes.





D.
  Create separate entities for Account with five attributes and Case with eight attributes in SAPI, which are combined by the PAPI to provide JSON output containing 13 attributes.


Page 1 out of 19 Pages