What is a key performance indicator (KPI) that measures the success of a typical C4E that is immediately apparent in responses from the Anypoint Platform APIs?
A.
The number of production outage incidents reported in the last 24 hours
B.
The number of API implementations that have a publicly accessible HTTP endpoint and are being managed by Anypoint Platform
C.
The fraction of API implementations deployed manually relative to those deployed using a CI/CD tool
D.
The number of API specifications in RAML or OAS format published to Anypoint
Exchange
The number of API specifications in RAML or OAS format published to Anypoint
Exchange
Explanation: Explanation
Correct Answer: The number of API specifications in RAML or OAS format published to
Anypoint Exchange
*****************************************
>> The success of C4E always depends on their contribution to the number of reusable
assets that they have helped to build and publish to Anypoint Exchange.
>> It is NOT due to any factors w.r.t # of outages, Manual vs CI/CD deployments or
Publicly accessible HTTP endpoints
>> Anypoint Platform APIs helps us to quickly run and get the number of published
RAML/OAS assets to Anypoint Exchange. This clearly depicts how successful a C4E team
is based on number of returned assets in the response.
Reference: https://help.mulesoft.com/s/question/0D52T00004mXSTUSA4/how-should-acompany-
measure-c4e-success
Refer to the exhibit.
A.
Option A
B.
Option B
C.
Option C
D.
Option D
Option A
Explanation: Explanation
Correct Answer: Ask the Marketing Department to interact with a mocking implementation
of the API using the automatically generated API Console.
*****************************************
As per MuleSoft's IT Operating Model:
>> API consumers need NOT wait until the full API implementation is ready.
>> NO technical test-suites needs to be shared with end users to interact with APIs.
>> Anypoint Platform offers a mocking capability on all the published API specifications to
Anypoint Exchange which also will be rich in documentation covering all details of API
functionalities and working nature.
>> No needs of arranging days of workshops with end users for feedback.
API consumers can use Anypoint Exchange features on the platform and interact with the
API using its mocking feature. The feedback can be shared quickly on the same to
incorporate any changes.
A customer wants to host their MuleSoft applications in CloudHub 1.0, and these
applications should be available at the domain https://api.acmecorp.com.
After creating a dedicated load balancer (DLB) called acme-dib-prod, which further action
must the customer take to complete the configuration?
A. Configure the DLB with a TLS certificate for api.acmecorp.com and create an A record for api.acmecorp.com to the public IP addresses associated with their DLB
B. Configure the DLB with a TLS certificate for api.acmecorp.com and create a CNAME record from api.acmecorp.com to acme-dib-prod.|lb.anypointdns.net
C. Configure the DLB with a TLS certificate for acme-dib-prod.Jb.anypointdns.net and create a CNAME record from api.acmecorp:com to acme-dlb-prod.lb.anypointdns.net
D. Configure the DLB with a TLS certificate for aplacmecorp.com and create a CNAME record from api.aomecorp.com to acme-dib-prod.ei.cloubhub.io
Explanation:
When setting up a custom domain for MuleSoft applications hosted on
CloudHub 1.0 using a Dedicated Load Balancer (DLB), follow these steps:
Set Up the TLS Certificate: Configure the DLB (acme-dib-prod) with a TLS
certificate that covers the custom domain api.acmecorp.com. This certificate will
allow HTTPS traffic to be securely directed through the DLB to your Mule
applications.
How can the application of a rate limiting API policy be accurately reflected in the RAML definition of an API?
A.
By refining the resource definitions by adding a description of the rate limiting policy behavior
B.
By refining the request definitions by adding a remaining Requests query parameter with description, type, and example
C.
By refining the response definitions by adding the out-of-the-box Anypoint Platform ratelimit-
enforcement securityScheme with description, type, and example
D.
By refining the response definitions by adding the x-ratelimit-* response headers with
description, type, and example
By refining the response definitions by adding the x-ratelimit-* response headers with
description, type, and example
Explanation: Explanation
Correct Answer: By refining the response definitions by adding the x-ratelimit-* response
headers with description, type, and example
*****************************************
When designing an upstream API and its implementation, the development team has been
advised to NOT set timeouts when invoking a downstream API, because that downstream
API has no SLA that can be relied upon. This is the only downstream API dependency of
that upstream API.
Assume the downstream API runs uninterrupted without crashing. What is the impact of
this advice?
A.
An SLA for the upstream API CANNOT be provided
B.
The invocation of the downstream API will run to completion without timing out
C.
A default timeout of 500 ms will automatically be applied by the Mule runtime in which the upstream API implementation executes
D.
A toad-dependent timeout of less than 1000 ms will be applied by the Mule runtime in
which the downstream API implementation executes
An SLA for the upstream API CANNOT be provided
Explanation: Explanation
Correct Answer: An SLA for the upstream API CANNOT be provided.
*****************************************
>> First thing first, the default HTTP response timeout for HTTP connector is 10000 ms (10
seconds). NOT 500 ms.
>> Mule runtime does NOT apply any such "load-dependent" timeouts. There is no such
behavior currently in Mule.
>> As there is default 10000 ms time out for HTTP connector, we CANNOT always
guarantee that the invocation of the downstream API will run to completion without timing
out due to its unreliable SLA times. If the response time crosses 10 seconds then the
request may time out.
The main impact due to this is that a proper SLA for the upstream API CANNOT be
provided.
Reference: https://docs.mulesoft.com/http-connector/1.5/http-documentation#parameters-3
What are the major benefits of MuleSoft proposed IT Operating Model?
A.
1. Decrease the IT delivery gap
2. Meet various business demands without increasing the IT capacity
3. Focus on creation of reusable assets first. Upon finishing creation of all the possible
assets then inform the LOBs in the organization to start using them
B.
1. Decrease the IT delivery gap
2. Meet various business demands by increasing the IT capacity and forming various IT
departments
3. Make consumption of assets at the rate of production
C.
1. Decrease the IT delivery gap
2. Meet various business demands without increasing the IT capacity
3. Make consumption of assets at the rate of production
1. Decrease the IT delivery gap
2. Meet various business demands without increasing the IT capacity
3. Make consumption of assets at the rate of production
Explanation: Explanation
Correct Answer:
1. Decrease the IT delivery gap
2. Meet various business demands without increasing the IT capacity
3. Make consumption of assets at the rate of production.
*****************************************
Reference: https://www.youtube.com/watch?v=U0FpYMnMjmM
What is true about where an API policy is defined in Anypoint Platform and how it is then applied to API instances?
A.
The API policy Is defined In Runtime Manager as part of the API deployment to a Mule
runtime, and then ONLY applied to the specific API Instance
B.
The API policy Is defined In API Manager for a specific API Instance, and then ONLY
applied to the specific API instance
C.
The API policy Is defined in API Manager and then automatically applied to ALL API instances
D.
The API policy is defined in API Manager, and then applied to ALL API instances in the
specified environment
The API policy Is defined In API Manager for a specific API Instance, and then ONLY
applied to the specific API instance
Explanation: Explanation
Correct Answer: The API policy is defined in API Manager for a specific API instance, and
then ONLY applied to the specific API instance.
*****************************************
>> Once our API specifications are ready and published to Exchange, we need to visit API
Manager and register an API instance for each API.
>> API Manager is the place where management of API aspects takes place like
addressing NFRs by enforcing policies on them.
>> We can create multiple instances for a same API and manage them differently for
different purposes.
>> One instance can have a set of API policies applied and another instance of same API
can have different set of policies applied for some other purpose.
>> These APIs and their instances are defined PER environment basis. So, one need to
manage them seperately in each environment.
>> We can ensure that same configuration of API instances (SLAs, Policies etc..) gets
promoted when promoting to higher environments using platform feature. But this is
optional only. Still one can change them per environment basis if they have to.
>> Runtime Manager is the place to manage API Implementations and their Mule Runtimes
but NOT APIs itself. Though API policies gets executed in Mule Runtimes, We CANNOT
enforce API policies in Runtime Manager. We would need to do that via API Manager only
for a cherry picked instance in an environment.
So, based on these facts, right statement in the given choices is - "The API policy is
defined in API Manager for a specific API instance, and then ONLY applied to the specific
API instance".
Reference: https://docs.mulesoft.com/api-manager/2.x/latest-overview-concept
An enterprise is embarking on the API-led digital transformation journey, and the central IT team has started to define System APIs. Currently there is no Enterprise Data Model being defined within the enterprise, and the definition of a clean Bounded Context Data Model requires too much effort. According to MuleSoft's recommended guidelines, how should the System API data model be defined?
A. If there are misspellings of the data fields in the back-end system, Systerm APIs should not correct it, and expose it as-is to mirror the back-end systems
B. The data model of the System APIs should make use of data types that approximately mirror those from the back-end systems
C. The data model should define its own naming convention, and not follow the same naming as the back-end systems
D. The System APIs should expose all back-end system fields
Explanation: When defining data models for System APIs without an established
Enterprise Data Model, MuleSoft recommends mirroring the back-end systems' data
types to achieve quick and effective integration without adding complexity. This approach
has several benefits:
| Page 1 out of 19 Pages |