Refer to the exhibit.
An organization uses one specific CloudHub (AWS) region for all CloudHub deployments.
How are CloudHub workers assigned to availability zones (AZs) when the organization's
Mule applications are deployed to CloudHub in that region?
A.
Workers belonging to a given environment are assigned to the same AZ within that region
B.
AZs are selected as part of the Mule application's deployment configuration
C.
Workers are randomly distributed across available AZs within that region
D.
An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ
An AZ is randomly selected for a Mule application, and all the Mule application's CloudHub workers are assigned to that one AZ
Explanation: Explanation
Correct Answer: Workers are randomly distributed across available AZs within that region.
*****************************************
>> Currently, we only have control to choose which AWS Region to choose but there is no
control at all using any configurations or deployment options to decide what Availability
Zone (AZ) to assign to what worker.
>> There are NO fixed or implicit rules on platform too w.r.t assignment of AZ to workers
based on environment or application.
>> They are completely assigned in random. However, cloudhub definitely ensures that
HA is achieved by assigning the workers to more than on AZ so that all workers are not
assigned to same AZ for same application.
: https://help.mulesoft.com/s/question/0D52T000051rqDj/one-cloudhub-aws-region-howcloudhub-
workers-are-assigned-to-availability-zones-azs-
Graphical user interface, application
Description automatically generated
Bottom of Form
Top of Form
Due to a limitation in the backend system, a system API can only handle up to 500
requests per second. What is the best type of API policy to apply to the system API to avoid overloading the backend system?
A.
Rate limiting
B.
HTTP caching
C.
Rate limiting - SLA based
D.
Spike control
Spike control
Explanation: Explanation
Correct Answer: Spike control
*****************************************
>> First things first, HTTP Caching policy is for purposes different than avoiding the
backend system from overloading. So this is OUT.
>> Rate Limiting and Throttling/ Spike Control policies are designed to limit API access, but
have different intentions.
>> Rate limiting protects an API by applying a hard limit on its access.
>> Throttling/ Spike Control shapes API access by smoothing spikes in traffic.
That is why, Spike Control is the right option
What is a key requirement when using an external Identity Provider for Client Management in Anypoint Platform?
A.
Single sign-on is required to sign in to Anypoint Platform
B.
The application network must include System APIs that interact with the Identity
Provider
C.
To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API clients must submit access tokens issued by that same Identity Provider
D.
APIs managed by Anypoint Platform must be protected by SAML 2.0 policies
To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API clients must submit access tokens issued by that same Identity Provider
Explanation: https://www.folkstalk.com/2019/11/mulesoft-integration-and-platform.html
Explanation
Correct Answer: To invoke OAuth 2.0-protected APIs managed by Anypoint Platform, API
clients must submit access tokens issued by that same Identity Provider
*****************************************
>> It is NOT necessary that single sign-on is required to sign in to Anypoint Platform
because we are using an external Identity Provider for Client Management
>> It is NOT necessary that all APIs managed by Anypoint Platform must be protected by
SAML 2.0 policies because we are using an external Identity Provider for Client
Management
>> Not TRUE that the application network must include System APIs that interact with the
Identity Provider because we are using an external Identity Provider for Client Management
Only TRUE statement in the given options is - "To invoke OAuth 2.0-protected APIs
managed by Anypoint Platform, API clients must submit access tokens issued by that same
Identity Provider"
References:
https://docs.mulesoft.com/api-manager/2.x/external-oauth-2.0-token-validation-policy
https://blogs.mulesoft.com/dev/api-dev/api-security-ways-to-authenticate-and-authorize/
A Mule application exposes an HTTPS endpoint and is deployed to the CloudHub Shared Worker Cloud. All traffic to that Mule application must stay inside the AWS VPC. To what TCP port do API invocations to that Mule application need to be sent?
A. 443
B. 8081
C. 8091
D. 8082
Explanation:
Correct Answer: 8082
A new upstream API Is being designed to offer an SLA of 500 ms median and 800 ms
maximum (99th percentile) response time. The corresponding API implementation needs to
sequentially invoke 3 downstream APIs of very similar complexity.
The first of these downstream APIs offers the following SLA for its response time: median:
100 ms, 80th percentile: 500 ms, 95th percentile: 1000 ms.
If possible, how can a timeout be set in the upstream API for the invocation of the first
downstream API to meet the new upstream API's desired SLA?
A.
Set a timeout of 50 ms; this times out more invocations of that API but gives additional
room for retries
B.
Set a timeout of 100 ms; that leaves 400 ms for the other two downstream APIs to complete
C.
No timeout is possible to meet the upstream API's desired SLA; a different SLA must be
negotiated with the first downstream API or invoke an alternative API
D.
Do not set a timeout; the Invocation of this API Is mandatory and so we must wait until it
responds
Set a timeout of 100 ms; that leaves 400 ms for the other two downstream APIs to complete
Explanation:
Explanation
Correct Answer: Set a timeout of 100ms; that leaves 400ms for other two downstream APIs
to complete
*****************************************
Key details to take from the given scenario:
>> Upstream API's designed SLA is 500ms (median). Lets ignore maximum SLA response
times.
>> This API calls 3 downstream APIs sequentially and all these are of similar complexity.
>> The first downstream API is offering median SLA of 100ms, 80th percentile: 500ms;
95th percentile: 1000ms.
Based on the above details:
>> We can rule out the option which is suggesting to set 50ms timeout. Because, if the
median SLA itself being offered is 100ms then most of the calls are going to timeout and
time gets wasted in retried them and eventually gets exhausted with all retries. Even if
some retries gets successful, the remaining time wont leave enough room for 2nd and 3rd
downstream APIs to respond within time.
>> The option suggesting to NOT set a timeout as the invocation of this API is mandatory
and so we must wait until it responds is silly. As not setting time out would go against the
good implementation pattern and moreover if the first API is not responding within its
offered median SLA 100ms then most probably it would either respond in 500ms (80th
percentile) or 1000ms (95th percentile). In BOTH cases, getting a successful response
from 1st downstream API does NO GOOD because already by this time the Upstream API
SLA of 500 ms is breached. There is no time left to call 2nd and 3rd downstream APIs.
>> It is NOT true that no timeout is possible to meet the upstream APIs desired SLA.
As 1st downstream API is offering its median SLA of 100ms, it means MOST of the time we
would get the responses within that time. So, setting a timeout of 100ms would be ideal for
MOST calls as it leaves enough room of 400ms for remaining 2 downstream API calls.
Refer to the exhibit.
A.
Option A
B.
Option B
C.
Option C
D.
Option D
Option D
Explanation: Explanation
Correct Answer: XML over HTTP
*****************************************
>> API-led connectivity and Application Networks urge to have the APIs on HTTP based
protocols for building most effective APIs and networks on top of them.
>> The HTTP based APIs allow the platform to apply various varities of policies to address
many NFRs
>> The HTTP based APIs also allow to implement many standard and effective
implementation patterns that adhere to HTTP based w3c rules
Once an API Implementation is ready and the API is registered on API Manager, who should request the access to the API on Anypoint Exchange?
A.
None
B.
Both
C.
API Client
D.
API Consumer
API Consumer
Explanation: Explanation
Correct Answer: API Consumer
*****************************************
>> API clients are piece of code or programs that use the client credentials of API
consumer but does not directly interact with Anypoint Exchange to get the access
>> API consumer is the one who should get registered and request access to API and then
API client needs to use those client credentials to hit the APIs
So, API consumer is the one who needs to request access on the API from Anypoint
Exchange
An API implementation is updated. When must the RAML definition of the API also be updated?
A.
When the API implementation changes the structure of the request or response messages
B.
When the API implementation changes from interacting with a legacy backend system deployed on-premises to a modern, cloud-based (SaaS) system
C.
When the API implementation is migrated from an older to a newer version of the Mule runtime
D.
When the API implementation is optimized to improve its average response time
When the API implementation changes the structure of the request or response messages
Explanation: Explanation
Correct Answer: When the API implementation changes the structure of the request or
response messages
*****************************************
>> RAML definition usually needs to be touched only when there are changes in the
request/response schemas or in any traits on API.
>> It need not be modified for any internal changes in API implementation like performance
tuning, backend system migrations etc
| Page 1 out of 19 Pages |