Say, there is a legacy CRM system called CRM-Z which is offering below functions:
1. Customer creation
2. Amend details of an existing customer
3. Retrieve details of a customer
4. Suspend a customer
A.
Implement a system API named customerManagement which has all the functionalities
wrapped in it as various operations/resources
B.
Implement different system APIs named createCustomer, amendCustomer,
retrieveCustomer and suspendCustomer as they are modular and has seperation of concerns
C.
Implement different system APIs named createCustomerInCRMZ,
amendCustomerInCRMZ, retrieveCustomerFromCRMZ and suspendCustomerInCRMZ as
they are modular and has seperation of concerns
Implement different system APIs named createCustomer, amendCustomer,
retrieveCustomer and suspendCustomer as they are modular and has seperation of concerns
Correct Answer: Implement different system APIs named createCustomer,
amendCustomer, retrieveCustomer and suspendCustomer as they are modular and has
seperation of concerns
*****************************************
>> It is quite normal to have a single API and different Verb + Resource combinations.
However, this fits well for an Experience API or a Process API but not a best architecture
style for System APIs. So, option with just one customerManagement API is not the best
choice here.
>> The option with APIs in createCustomerInCRMZ format is next close choice w.r.t
modularization and less maintenance but the naming of APIs is directly coupled with the
legacy system. A better foreseen approach would be to name your APIs by abstracting the
backend system names as it allows seamless replacement/migration of any backend
system anytime. So, this is not the correct choice too.
>> createCustomer, amendCustomer, retrieveCustomer and suspendCustomer is the right
approach and is the best fit compared to other options as they are both modular and same
time got the names decoupled from backend system and it has covered all requirements a
System API needs.
What API policy would be LEAST LIKELY used when designing an Experience API that is intended to work with a consumer mobile phone or tablet application?
A.
OAuth 2.0 access token enforcement
B.
Client ID enforcement
C.
JSON threat protection
D.
IPwhitellst
IPwhitellst
Explanation: Explanation
Correct Answer: IP whitelist
*****************************************
>> OAuth 2.0 access token and Client ID enforcement policies are VERY common to apply
on Experience APIs as API consumers need to register and access the APIs using one of
these mechanisms
>> JSON threat protection is also VERY common policy to apply on Experience APIs to
prevent bad or suspicious payloads hitting the API implementations.
>> IP whitelisting policy is usually very common in Process and System APIs to only
whitelist the IP range inside the local VPC. But also applied occassionally on some
experience APIs where the End User/ API Consumers are FIXED.
>> When we know the API consumers upfront who are going to access certain Experience
APIs, then we can request for static IPs from such consumers and whitelist them to prevent
anyone else hitting the API.
However, the experience API given in the question/ scenario is intended to work with a
consumer mobile phone or tablet application. Which means, there is no way we can know
all possible IPs that are to be whitelisted as mobile phones and tablets can so many in
number and any device in the city/state/country/globe.
So, It is very LEAST LIKELY to apply IP Whitelisting on such Experience APIs whose
consumers are typically Mobile Phones or Tablets.
A company wants to move its Mule API implementations into production as quickly as
possible. To protect access to all Mule application data and metadata, the company
requires that all Mule applications be deployed to the company's customer-hosted
infrastructure within the corporate firewall. What combination of runtime plane and control
plane options meets these project lifecycle goals?
A.
Manually provisioned customer-hosted runtime plane and customer-hosted control plane
B.
MuleSoft-hosted runtime plane and customer-hosted control plane
C.
Manually provisioned customer-hosted runtime plane and MuleSoft-hosted control plane
D.
iPaaS provisioned customer-hosted runtime plane and MuleSoft-hosted control plane
Manually provisioned customer-hosted runtime plane and customer-hosted control plane
Explanation:
Explanation
Correct Answer: Manually provisioned customer-hosted runtime plane and customerhosted
control plane
*****************************************
There are two key factors that are to be taken into consideration from the scenario given in
the question.
>> Company requires both data and metadata to be resided within the corporate firewall
>> Company would like to go with customer-hosted infrastructure.
Any deployment model that is to deal with the cloud directly or indirectly (Mulesoft-hosted
or Customer's own cloud like Azure, AWS) will have to share atleast the metadata.
Application data can be controlled inside firewall by having Mule Runtimes on customer
hosted runtime plane. But if we go with Mulsoft-hosted/ Cloud-based control plane, the
control plane required atleast some minimum level of metadata to be sent outside the
corporate firewall.
As the customer requirement is pretty clear about the data and metadata both to be within
the corporate firewall, even though customer wants to move to production as quickly as
possible, unfortunately due to the nature of their security requirements, they have no other
option but to go with manually provisioned customer-hosted runtime plane and customerhosted
control plane.
What is true about automating interactions with Anypoint Platform using tools such as Anypoint Platform REST APIs, Anypoint CU, or the Mule Maven plugin?
A.
Access to Anypoint Platform APIs and Anypoint CU can be controlled separately through the roles and permissions in Anypoint Platform, so that specific users can get access to Anypoint CLI white others get access to the platform APIs
B.
Anypoint Platform APIs can ONLY automate interactions with CloudHub, while the Mule Maven plugin is required for deployment to customer-hosted Mule runtimes
C.
By default, the Anypoint CLI and Mule Maven plugin are NOT included in the Mule runtime, so are NOT available to be used by deployed Mule applications
D.
API policies can be applied to the Anypoint Platform APIs so that ONLY certain LOBs have access to specific functions
By default, the Anypoint CLI and Mule Maven plugin are NOT included in the Mule runtime, so are NOT available to be used by deployed Mule applications
Explanation: Explanation
Correct Answer: By default, the Anypoint CLI and Mule Maven plugin are NOT included in
the Mule runtime, so are NOT available to be used by deployed Mule applications
*****************************************
>> We CANNOT apply API policies to the Anypoint Platform APIs like we can do on our
custom written API instances. So, option suggesting this is FALSE.
>> Anypoint Platform APIs can be used for automating interactions with both CloudHub
and customer-hosted Mule runtimes. Not JUST the CloudHub. So, option opposing this is
FALSE.
>> Mule Maven plugin is NOT mandatory for deployment to customer-hosted Mule
runtimes. It just helps your CI/CD to have smoother automation. But not a compulsory
requirement to deploy. So, option opposing this is FALSE.
>> We DO NOT have any such special roles and permissions on the platform to separately
control access for some users to have Anypoint CLI and others to have Anypoint Platform
APIs. With proper general roles/permissions (API Owner, Cloudhub Admin etc..), one can
use any of the options (Anypoint CLI or Platform APIs). So, option suggesting this is
FALSE.
Only TRUE statement given in the choices is that - Anypoint CLI and Mule Maven plugin
are NOT included in the Mule runtime, so are NOT available to be used by deployed Mule
applications.
Maven is part of Studio or you can use other Maven installation for development.
CLI is convenience only. It is one of many ways how to install app to the runtime.
These are definitely NOT part of anything except your process of deployment or
automation.
An operations team is analyzing the effort needed to set up monitoring of their application network. They are looking at which API invocation metrics can be used to identify and predict trouble without having to write custom scripts or install additional analytics software or tools. Which type of metrics can satisfy this goal of directly identifying and predicting failures?
A. The number and types of API policy violations per day
B. The effectiveness of the application network based on the level of reuse
C. The number and types of past API invocations across the application network
D. The ROI from each APT invocation
Explanation:
To monitor an application network and predict issues without custom scripts,
policy violation metrics are critical. They provide insights into potential problems by
tracking instances where API usage does not conform to defined policies. Here’s why this
approach is suitable:
An online store's marketing team has noticed an increase in customers leaving online baskets without checking out. They suspect a technology issue is at the root cause of the baskets being left behind. They approach the Center for Enablement to ask for help identifying the issue. Multiple APIs from across all the layers of their application network are involved in the shopping application. Which feature of the Anypoint Platform can be used to view metrics from all involved APIs at the same time?
A. Custom dashboards
B. Built-in dashboards
C. Functional monitoring
D. API Manager
A Mule application exposes an HTTPS endpoint and is deployed to the CloudHub Shared Worker Cloud. All traffic to that Mule application must stay inside the AWS VPC. To what TCP port do API invocations to that Mule application need to be sent?
A.
443
B.
8081
C.
8091
D.
8082
8082
Explanation: Explanation
Correct Answer: 8082
*****************************************
>> 8091 and 8092 ports are to be used when keeping your HTTP and HTTPS app private
to the LOCAL VPC respectively.
>> Above TWO ports are not for Shared AWS VPC/ Shared Worker Cloud.
>> 8081 is to be used when exposing your HTTP endpoint app to the internet through
Shared LB
>> 8082 is to be used when exposing your HTTPS endpoint app to the internet through
Shared LB
So, API invocations should be sent to port 8082 when calling this HTTPS based app.
References:
https://docs.mulesoft.com/runtime-manager/cloudhub-networking-guide
https://help.mulesoft.com/s/article/Configure-Cloudhub-Application-to-Send-a-HTTPSRequest-
Directly-to-Another-Cloudhub-Application
https://help.mulesoft.com/s/question/0D52T00004mXXULSA4/multiple-http-listerners-oncloudhub-
one-with-port-9090
Several times a week, an API implementation shows several thousand requests per minute
in an Anypoint Monitoring dashboard, Between these bursts, the
dashboard shows between two and five requests per minute. The API implementation is
running on Anypoint Runtime Fabric with two non-clustered replicas, reserved vCPU 1.0
and vCPU Limit 2.0.
An API consumer has complained about slow response time, and the dashboard shows the
99 percentile is greater than 120 seconds at the time of the complaint. It also shows greater than 90% CPU usage during these time periods.
In manual tests in the QA environment, the API consumer has consistently reproduced the
slow response time and high CPU usage, and there were no other API requests at
this time. In a brainstorming session, the engineering team has created several proposals
to reduce the response time for requests.
Which proposal should be pursued first?
A. Increase the vCPU resources of the API implementation
B. Modify the API client to split the problematic request into smaller, less-demanding requests
C. Increase the number of replicas of the API implementation
D. Throttle the APT client to reduce the number of requests per minute
| Page 1 out of 19 Pages |