Mulesoft MCPA-Level-1 Exam Questions

151 Questions


Updation Date : 1-Jan-2026



Mulesoft MCPA-Level-1 exam questions feature realistic, exam-like questions that cover all key topics with detailed explanations. You’ll identify your strengths and weaknesses, allowing you to focus your study efforts effectively. By practicing with our MCPA-Level-1 practice test, you’ll gain the knowledge, speed, and confidence needed to pass the Mulesoft exam on your first attempt.

Why leave your success to chance? Our Mulesoft MCPA-Level-1 dumps are your ultimate guide to passing the exam on your first try!

A large lending company has developed an API to unlock data from a database server and web server. The API has been deployed to Anypoint Virtual Private Cloud (VPC) on CloudHub 1.0. The database server and web server are in the customer's secure network and are not accessible through the public internet. The database server is in the customer's AWS VPC, whereas the web server is in the customer's on-premises corporate data center. How can access be enabled for the API to connect with the database server and the web server?


A. Set up VPC peering with AWS VPC and a VPN tunnel to the customer's on-premises corporate data center


B. Set up VPC peering with AWS VPC and the customer's on-premises corporate data center


C. Setup a transit gateway to the customer's on-premises corporate data center through AWS VPC


D. Set up VPC peering with the customer's on-premises corporate data center and a VPN tunnel to AWS VPC





A.
  Set up VPC peering with AWS VPC and a VPN tunnel to the customer's on-premises corporate data center

Explanation:

  • Scenario Overview:
  • Connectivity Requirements:
  • Analysis of Options:
Conclusion:
For more detailed reference, MuleSoft documentation on Anypoint VPC peering and VPN connectivity provides additional context on best practices for setting up these connections within a hybrid network infrastructure.

What is a typical result of using a fine-grained rather than a coarse-grained API deployment model to implement a given business process?


A.

A decrease in the number of connections within the application network supporting the business process


B.

A higher number of discoverable API-related assets in the application network


C.

A better response time for the end user as a result of the APIs being smaller in scope and complexity


D.

An overall tower usage of resources because each fine-grained API consumes less resources





B.
  

A higher number of discoverable API-related assets in the application network



Explanation: Explanation
Correct Answer: A higher number of discoverable API-related assets in the application
network.
*****************************************
>> We do NOT get faster response times in fine-grained approach when compared to
coarse-grained approach.
>> In fact, we get faster response times from a network having coarse-grained APIs
compared to a network having fine-grained APIs model. The reasons are below.
Fine-grained approach:
1. will have more APIs compared to coarse-grained
2. So, more orchestration needs to be done to achieve a functionality in business process.
3. Which means, lots of API calls to be made. So, more connections will needs to be
established. So, obviously more hops, more network i/o, more number of integration points
compared to coarse-grained approach where fewer APIs with bulk functionality embedded
in them.
4. That is why, because of all these extra hops and added latencies, fine-grained approach
will have bit more response times compared to coarse-grained.
5. Not only added latencies and connections, there will be more resources used up in finegrained
approach due to more number of APIs.
That's why, fine-grained APIs are good in a way to expose more number of resuable assets
in your network and make them discoverable. However, needs more maintenance, taking
care of integration points, connections, resources with a little compromise w.r.t network
hops and response times.

An organization requires several APIs to be secured with OAuth 2.0, and PingFederate has been identified as the identity provider for API client authorization, The PingFederate Client Provider is configured in access management, and the PingFederate OAuth 2.0 Token Enforcement policy is configured for the API instances required by the organization. The API instances reside in two business groups (Group A and Group B) within the Master Organization (Master Org). What should be done to allow API consumers to access the API instances?


A. The API administrator should configure the correct client discovery URL in both child business groups, and the API consumer should request access to the API in Ping Identity


B. The API administrator should grant access to the API consumers by creating contracts in the relevant API instances in API Manager


C. The APL consumer should create a client application and request access to the APT in Anypoint Exchange, and the API administrator should approve the request


D. The APT consumer should create a client application and request access to the API in Ping Identity, and the organization's Ping Identity workflow will grant access





C.
  The APL consumer should create a client application and request access to the APT in Anypoint Exchange, and the API administrator should approve the request

4A developer for a transportation organization is implementing exactly one processing functionality in a Reservation Mule application to process and store passenger records. This Reservation application will be deployed to multiple CloudHub workers/replicas. It is possible that several external systems could send duplicate passenger records to the Reservation application.
An appropriate storage mechanism must be selected to help the Reservation application process each passenger record exactly once as much as possible. The selected storage mechanism must be shared by all the CloudHub workers/replicas in order to synchronize the state information to assist attempting exactly once processing of each passenger record by the deployed Reservation Mule application.
Which type of simple storage mechanism in Anypoint Platform allows the Reservation Mule application to update and share data between the CloudHub workers/replicas exactly once, with minimal development effort?


A. Persistent Object Store


B. Runtime Fabric Object Store


C. Non-persistent Object Store


D. In-memory Mule Object Store





A.
  Persistent Object Store


The responses to some HTTP requests can be cached depending on the HTTP verb used
in the request. According to the HTTP specification, for what HTTP verbs is this safe to do?


A.

PUT, POST, DELETE


B.

GET, HEAD, POST


C.

GET, PUT, OPTIONS


D.

GET, OPTIONS, HEAD





D.
  

GET, OPTIONS, HEAD



An API client calls one method from an existing API implementation. The API
implementation is later updated. What change to the API implementation would require the API client's invocation logic to also be updated?


A.

When the data type of the response is changed for the method called by the API client


B.

When a new method is added to the resource used by the API client


C.

When a new required field is added to the method called by the API client


D.

When a child method is added to the method called by the API client





C.
  

When a new required field is added to the method called by the API client



Explanation: Explanation
Correct Answer: When a new required field is added to the method called by the API client
*****************************************
>> Generally, the logic on API clients need to be updated when the API contract breaks.
>> When a new method or a child method is added to an API , the API client does not
break as it can still continue to use its existing method. So these two options are out.
>> We are left for two more where "datatype of the response if changed" and "a new
required field is added".
>> Changing the datatype of the response does break the API contract. However, the
question is insisting on the "invocation" logic and not about the response handling logic.
The API client can still invoke the API successfully and receive the response but the
response will have a different datatype for some field.
>> Adding a new required field will break the API's invocation contract. When adding a new
required field, the API contract breaks the RAML or API spec agreement that the API
client/API consumer and API provider has between them. So this requires the API client
invocation logic to also be updated.

When using CloudHub with the Shared Load Balancer, what is managed EXCLUSIVELY
by the API implementation (the Mule application) and NOT by Anypoint Platform?


A.

The assignment of each HTTP request to a particular CloudHub worker


B.

The logging configuration that enables log entries to be visible in Runtime Manager


C.

The SSL certificates used by the API implementation to expose HTTPS endpoints


D.

The number of DNS entries allocated to the API implementation





C.
  

The SSL certificates used by the API implementation to expose HTTPS endpoints



Explanation: Explanation
Correct Answer: The SSL certificates used by the API implementation to expose HTTPS
endpoints
*****************************************
>> The assignment of each HTTP request to a particular CloudHub worker is taken care by
Anypoint Platform itself. We need not manage it explicitly in the API implementation and in
fact we CANNOT manage it in the API implementation.
>> The logging configuration that enables log entries to be visible in Runtime Manager is
ALWAYS managed in the API implementation and NOT just for SLB. So this is not
something we do EXCLUSIVELY when using SLB.
>> We DO NOT manage the number of DNS entries allocated to the API implementation
inside the code. Anypoint Platform takes care of this.
It is the SSL certificates used by the API implementation to expose HTTPS endpoints that
is to be managed EXCLUSIVELY by the API implementation. Anypoint Platform does NOT
do this when using SLBs.

Mule applications that implement a number of REST APIs are deployed to their own subnet
that is inaccessible from outside the organization.
External business-partners need to access these APIs, which are only allowed to be
invoked from a separate subnet dedicated to partners - called Partner-subnet. This subnet
is accessible from the public internet, which allows these external partners to reach it.
Anypoint Platform and Mule runtimes are already deployed in Partner-subnet. These Mule
runtimes can already access the APIs.
What is the most resource-efficient solution to comply with these requirements, while
having the least impact on other applications that are currently using the APIs?


A.

Implement (or generate) an API proxy Mule application for each of the APIs, then deploy the API proxies to the Mule runtimes


B.

Redeploy the API implementations to the same servers running the Mule runtimes


C.

Add an additional endpoint to each API for partner-enablement consumption


D.

Duplicate the APIs as Mule applications, then deploy them to the Mule runtimes





A.
  

Implement (or generate) an API proxy Mule application for each of the APIs, then deploy the API proxies to the Mule runtimes




Page 1 out of 19 Pages